
Design and Implementation of the Grunt Programming Language i

Contents

Preface* ii
The language, The report, Observations

1 The Grunt Language 1
Objects and Messages ... 1
Classes ... 2

Superclasses, Class declaration, System classes
Methods ... 5

Expressions, Receiver objects, Method declaration
Class Hierarchy... 6

Overriding methods, Data abstraction
Extensions ... 7

Blocks, Conditionals
Differences with Pascal .. 9

Communication

2 Implementation 10
Definitions ... 10

Data structures, Creation, Local and global definitions,
System classes

Code generation... 12
Message sending

Instructions ... 14
Stack frame maintenance, Message sending, Special
instructions

A Examples 16

B Grammar 20

C Translation 23

D Bibliography 24

Index 25

* This report was created on the Apple Macintosh Plus, with Microsoft Word
and MacDraw II.

Copyright © 1990 by Ben Hekster and Peter F.A. Middelhoek
Revised March 1990

Typeset in 10-point New Century Schoolbook, Helvetica and Courier

Design and Implementation of the Grunt Programming Language ii

Preface

Following is the report on the Grunt programming language which was written
as the assignment for the Vertalerbouw course. As per prior agreement, we
have chosen to conceive a radically different syntax and semantics, creating an
object-oriented language rather than simply implementing the traditional
procedure-oriented one. The particular issues and problems which have come
up during the development of the language have definitely greatly enhanced
our understanding of the semantical and implementational differences between
the two categories of languages. Writing the report in English allowed us to use
the standard terminology as well as exercise our use of the language, and we
hope will not prove too much of an imposition.

All in all, the creation of Grunt, from its design, implementation, testing,
debugging, up to the writing of this report spanned more than seven weeks of
very intensive effort. Problems with the Computer Center facilities and the
departure of one of the authors because of an internship in the U.S. further
increased the workload. During the time that both authors were present, there
was equal involvement of each in all aspects of the design and implementation
of the language—although some of its facets may more pronouncedly carry the
stamp of one of the authors in particular, there was always full, active and
collective participation. The report was written by Ben Hekster.

The language The Grunt language is loosely based on and derives its name from the
Smalltalk-80 language developed at Xerox's Palo Alto Research Center[1].
Some of the basic concepts of object-oriented language developed here have
been incorporated in the language. The name ‘Grunt’, referring to the
rudimentary nature of primeval personal communication represents the state
of the language relative to Smalltalk.

When designing the language, it soon became clear to us that for various
reasons, which will be expanded upon as the particular issues arise, object-ori-
ented systems are most effectively implemented as interpreters. Both
Smalltalk-80 and the Macintosh implementation Smalltalk/V are interpreters.
Because Grunt, as the product of a course assignment was dictated to be a
compiled language, some obvious and also quite a few very subtle
implementational and semantical differences between the two types com-
plicated the definition and implementation to the point where some features of
the language, notably involving recursion, needed to be somewhat curtailed. As
stated, the particular issues will be highlighted in the appropriate sections.

The report We deemed it appropriate in our case to provide more information than usual
on the use of the language—in fact, the entire first part of this report is mainly
concerned with the informal syntax and semantics of Grunt and covers some of
the relevant general truths of object-oriented languages, from a beginning
object-oriented programmer's point of view. The second part elaborates on the
many and diverse developmental and implementational aspects and difficulties
of the language. Please note that it is impossible to highlight each decision
made in the very lengthy process of designing and implementing a compiler
such as this.

Design and Implementation of the Grunt Programming Language iii

The required listings are given in a separate document. They are con-
secutively numbered and referred to in this report by references such as [L1].
Plain-number references apply to the bibliography in Appendix D.

Observations We can truthfully state that the course has been of great value to both of us,
both in terms of the experience gained in compiler design, working with
compiler-generating tools and putting formal computer science and grammar
into practice, as well as the insights into the workings and peculiarities of
object-oriented languages it has afforded us—more simply, we greatly enjoyed
creating our own language. The requirements of this type of language often
proved to be such that particular aspects of the generator system, which when
being written with conventional procedural languages in mind were taken to be
of natural self-evidence, became inconvenient at least. The additional user
instructions also added to debugging of the compiler.

We should have paid more attention from the start to the integrity of the
procedures. In the case of user errors some actions cannot return a value (e.g.,
FindMethod when no method exists), and return NIL. In the beginning, we
had not consistently programmed our actions to be prepared to receive NIL
arguments, however. This does occur routinely, because even when an error is
detected the compiler is able to continue the parsing process.

Disk quota and budget constraints became increasingly worrying as we
neared completion. Regularly, compilation or linking was aborted because the
overdraft had been exceeded. We have consequently become particularly adept
at typing the following commands:

PURGE *.*
DELETE *.LIS;*,*.LST;*

A quick mental calculation showed us that using a modem during the
weekends, compilation was 90% cheaper, and proved to be quite a bit faster as
well. A source-code control utility (such as UNIX’s make) also would have
saved us some perplexed debugging as well as several unnecessary
compilations.

But by far the most entertainment was provided by the staff of the Com-
puter Center in the three separate system shutdowns, the accidental termi-
nation of our account after the compiler was finished, its restoration with week-
old files, which a visit to said staff was able to improve to just day-old versions,
the discovery that the system no longer recognized us as the owner of our files,
which situation, fortunately, a further two visits to the Computer Center was
able to correct.

Nevertheless, both of us are greatly looking forward to the succeeding
course.

Ben Hekster Peter F.A. Middelhoek
Tankelanden 5 Glanestraat 19
7542 DR Enschede 7555 KW Hengelo
053-764091 074-911674

Design and Implementation of the Grunt Programming Language 1

1
The Grunt Language

Objects and
Messages

In an object-oriented system, an object consists of some private data and a set
of operations which can be performed on it. Examples of objects could be
integer values, display windows and files. A message may be sent to an object,
requesting that one of these operations be carried out on it. The object's
implementation of the reaction to the message is called the method. The object
to which the message is directed is called the receiver of the message. For
example, in Grunt, an integer object 3 can be sent a message requesting that
the value of another integer object a be added to it:

3 + a

In this case, 3 is the receiver of the message + a. The integer object a is the
argument of the message. Methods answer to messages by returning a result
object. For the + message the result object is another integer object.

Another example is the message write, which requests that the integer ob-
ject display its value on the screen:

3 write " the screen will display '3' "

write takes no arguments. Text between double quotes is called a comment and
is ignored by the Grunt compiler.

If a message is sent to an object which it does not implement in one of its
methods, it is said that the object does not understand the message. For
example, if we were to ask the integer to compute its Boolean inversion, the
system would produce an error message:

3 not
?? 1. EUSR : Message not understood in/near line …

An object whose value is explicitly stated is called a literal—for example, ‘3’ is
an integer literal. ‘a’ is the name of a variable object with an as yet unspecified
value. Variable names may begin with any letter or symbol except a double
quote ‘"’, parentheses ‘(’ or ‘)’, or dollar sign ‘$’. The ‘$’ symbol is used to signify
character literals, as in a†. Carriage return and tab characters can be
specified by $$n$ and $$t$, respectively. There are also two Boolean literals true
and false. The complete Grunt grammar may be found in Appendix B.

Objects usually understand an assignment message ‘:=’ which can be used to
assign values to variable objects, such as in

a := 2

As literal objects are objects in their own right, they can also respond to
messages and their values can be changed, for example, by sending assignment
messages:

3 := 2

Even though literal objects only exist within the expression, this feature can be
very useful. To input an object directly into an expression without having to
declare a variable, literal receivers can be used:

† It was originally intended that character literals in Grunt have the same
syntax as in Smalltalk, e.g., $a. However, the scanner generator requires
character literals to be terminated at both ends

Design and Implementation of the Grunt Programming Language 2

(0 read) write

The Integer object 0 is sent the message read, which allows the user to enter a
value from the keyboard. The resulting object is then written to the terminal.

Classes Same kinds of objects are grouped into classes. There is, for example, an Integer
class. Individual objects belonging to a class are called instances of the class. A
new copy of the private data is created for each instance. For example, 3 and a
are instances of the class Integer. The private data associated with classes are
called instance variables, because they exist independently in each individual
instance. In the Integer class, the value of the integer object is stored in its only
instance variable.

Figure 1.1

classes

instances

Superclasses New classes can be defined in terms of existing classes by specifying additional
private data and operations in the new class. The new class is called a subclass
of the existing one, which is called the superclass. This type of inheritance may
be depicted as follows:

Figure 1.2

A class may have any number of direct subclasses but only one direct su-
perclass. There is only one class, Object, which has no superclass. All classes
are either direct or indirect subclasses of this class.

The subclass inherits all of the instance variables and methods of its super-
class—it builds on and implements new functionality absent in the superclass.
In this way, when a message is sent to a class which it does not explicitly
implement, it is passed to its superclass which perhaps does, and so forth, until
eventually a superclass is reached which does understand it. In interpreted
systems, this actually does represent the manner in which a message is sent—
in the Grunt system, however, a check is made beforehand whether a class or
one of its superclasses understands the message, which is then sent directly to
the first implementing class.

Another form of subclassing, called multiple inheritance, was also con-
sidered during the design phase but later abandoned due to implementational
difficulties. In this scheme, objects can belong to more than one class at the
same time. For instance, a new class with both Boolean and Integer instance
variables would respond to unknown messages by sending each of its instance
variables the message in question. In this way, the objects' individual classes
decide how to implement the message.

Design and Implementation of the Grunt Programming Language 3

Figure 1.3

Class declaration A new class Point, consisting of two integer components representing the x- and
y-coordinates of the point, may be declared by the following:

"
Class declaration

"

CLASS Point PARENT Integer " Inherits its x-coordinate from Integer "
| Integer y | " but adds the y instance variable "
" method declarations "
ENDCLASS

This declares a subclass Point of Integer with an additional integer instance
variable y. Class names must be unique. It is customary for class names to
begin with an uppercase, and for any kind of variable to begin with a lowercase
character.

The x-coordinate of the point does not have to be declared as an additional
instance variable because one is already inherited from the superclass. Of
course it would have been equally valid to have declared the instance variable x
and to have considered the inherited object to represent the y-coordinate. It is
illegal to declare instance variables of the class which is being defined—this is
called instance recursion in Grunt, and results in an error.

As it is, Point implements no methods, and any messages sent to it will be
deferred to its superclass Integer. For example, if location is a Point, the result
of

location + 2

is the Integer value of the x-coordinate of location plus two.
The explicit specification of the superclass “PARENT Integer” may be

omitted, in which case the superclass is taken to be the class of the sur-
rounding declaration—new classes may be declared following the method
declarations and before ENDCLASS. The source file may itself be considered to
be similarly inserted in the Object class declaration (see below) so that
outermost declarations will have Object as their superclass if they have no
PARENT specification. This form of class declaration may be preferable in some
instances where it more clearly indicates the class hierarchy.

A small concession had to be made in giving the Grunt programmer
maximum possible freedom in class naming, in order to make the system
operable. In the interactive graphical environment of Smalltalk the operator
uses his mouse to select expressions and thus send messages to arbitrary
objects. Grunt, however recognizes a class Program and begins execution by
executing its first method. Programs without this class cannot run.

Design and Implementation of the Grunt Programming Language 4

System classes Because new classes must always succeed from superclasses, it follows that
there must already be at least one class from which these can be defined. These
classes must also have some predefined methods, because new methods are
described in terms of other methods. The Grunt system provides four such
system classes, Object, Integer, Boolean and Character. The Object class has no
instance variables and no methods—it serves merely as the superclass to the
Integer, Boolean and Character classes. The system class hierarchy is illustrated
in the following figure:

Figure 1.4

Integer
:=
+
–
=
<>
read
write

Character
:=
=
<>
read
write

Boolean
:=
=
<>
not
and
or
read
write

Object

Within the class boxes the messages have been listed which are understood by
the class—some of these have already been introduced. Many of the messages
are understood by more than one of the system classes, such as := (assignment),
= (equality), <> (inequality), read (input) and write (output).

The methods predefined with the system classes are shown below in pseudo-
Grunt format. (Method declaration is explained in the following section.) The
primitive methods are the only ones which cannot actually be expressed in
Grunt itself but have been implemented directly in the native processor's ma-
chine language, in this case the ‘targetcode’ language. The declarations are
useful, however, because they define the manner in which the primitive
methods are to be used (cf. also the next section).

"
System class 'declarations'

Imaginary declarations illustrate primitive methods
"
" The declarations make use of a nonexistent class Word "

CLASS Object

CLASS Integer
| Word i |
METHOD Integer := Integer value || i := value ENDMETHOD
METHOD Integer + Integer addend || i := i + addend ENDMETHOD
METHOD Integer – Integer subend || i := i – addend ENDMETHOD
METHOD Boolean = Integer comp || i == comp ENDMETHOD
METHOD Boolean <> Integer comp || i <> comp ENDMETHOD
METHOD Integer read || i read ENDMETHOD
METHOD Integer write || i write ENDMETHOD
ENDCLASS

CLASS Boolean
| Word b |
METHOD Boolean := Boolean value || b := value ENDMETHOD
METHOD Boolean = Boolean comp || b = comp ENDMETHOD
METHOD Boolean <> Boolean comp || b <> comp ENDMETHOD

Design and Implementation of the Grunt Programming Language 5

METHOD Boolean not || b := b not ENDMETHOD
METHOD Boolean and Boolean op || b := b and op ENDMETHOD
METHOD Boolean or Boolean op || b := b or op ENDMETHOD
METHOD Boolean read || b read ENDMETHOD
METHOD Boolean write || b write ENDMETHOD
ENDCLASS

CLASS Character
| Word c |
METHOD Character := Character value || c := value ENDMETHOD
METHOD Boolean = Character comp || c = comp ENDMETHOD
METHOD Boolean <> Character comp || c <> comp ENDMETHOD
METHOD Character read || c read ENDMETHOD
METHOD Character write || c write ENDMETHOD
ENDCLASS

" The user source file may be syntactically considered to be inserted here "

ENDCLASS

Methods Methods are a class's way of responding to messages which it receives. They
can be added to new, but not to existing classes. The following sections explain
how a message response is effected, and how new methods can be created,
possibly altering the operation of existing methods.

Expressions The result object returned by objects can be used as a receiver or argument in
another message, so forming expressions. For example, the Integer object 1 can
be sent the message – 3 + a:

1 – 3 + a

which in turn returns an Integer result with value –4 (assuming the previous
assignment a := 2 was carried out). Messages are right-associative—i.e., the
above expression is evaluated as 1 – (3 + a) and not as (1 – 3) + a. Of course,
parentheses may be used to alter the order of evaluation.

Multiple independent expressions can be grouped together into a single
expression by use of the dot operator. Pairs of expressions separated by a ‘.’ are
evaluated left to right, and the class and value of the expression are the class
and value of the right subexpression. For example, the expression

1 – 3 + a . true not

returns a Boolean object with value false.

Receiver objects When a message is sent to an object, the class's method determines what the
object's response will be, and consequently, whether the value of the object
itself is changed. For example, each of the system classes' interpretation of the
assignment message := is to equate the value of the receiver to that of the
argument:

b := true

The assignment messages are actually the only primitive methods which do so.
None of the other primitive methods alter the value of the receiver, so in the
following expression the value of b remains unchanged:

b not

What messages do, is return a new object—in this case, one representing the
Boolean inversion of b. Carrying the principle through, expressions represent
new objects and not the receiver of the first expression. For example,

(b not) := true

assigns the value true to the result object b not, not to b itself. Even the as-
signment methods return an object, representing the newly assigned value of

Design and Implementation of the Grunt Programming Language 6

the receiver. Objects such as (b not) are called temporary objects, because they
exist because of and only during evaluation of the expression. When forming
expressions it is important to realize whether the receiver may be altered.

Method declara-
tion

The newly defined Point class now includes the necessary data, but the ad-
ditional data is useless because no methods have been implemented to operate
on it. We may first of all wish to define a method which can be used to reset the
coordinates of the point to zero:

" Point reset
Resets both coordinates of the Point

"
METHOD Point reset ||

super := 0.
y := 0.
self
ENDMETHOD

Method definitions are given inside the corresponding class definition. (A
complete Point class is given in Appendix A.) The above defines a new method
reset with a Point result. By convention alphabetic message names start with a
lowercase letter. Alphabetic messages which take arguments usually have a
colon ‘:’ at their ends.

A method may have temporary variables which are created each time it is
invoked and are destroyed when it has concluded. As with instance variables in
class definitions, temporary variable declarations are placed within vertical
bars ‘|’. Temporary variables are initialized to zero when a method is invoked.
None have been declared for this method. Because temporary variables and
arguments are so alike from a method's point of view (e.g., they are initialized
and exist only while the method is executing) they are often grouped together
and called local variables. Variables may have the same names as classes or
methods—this may be useful in some cases where both are used to refer to the
same thing.

The pseudo-objects self and super automatically refer to the receiver itself
and the receiver of the superclass, respectively. The use of super enables a
method to access the instance variables of the superclass—in this case, the x-
coordinate Integer.

The object returned by the method is the result of the expression following
the variable declaration. In this case, the dot operator and self are used to
return the value of the Point receiver as the result. Although it is possible for
methods to return no value at all by returning an Object, which has no instance
variables, it is generally more useful for the method to at least return the
receiver itself so that it can be used in an expression.

Class Hierar-
chy

In the following sections, some of the more sublime aspects of class hierarchies
particular to object-oriented languages and pertinent to Grunt will be
highlighted.

Overriding
methods

It may be desirable to define a new implementation of the method + in Point in
which the argument is added to both rather than just the x-coordinate. We can
simply define a new method + within Point:

METHOD Point + Integer addend
||
super := super + addend.
y := y + addend.
self
ENDMETHOD

An even better version (like the one given in the appendix) would allow each
coordinate of the point to be added to a different integer.

Method names must be unique in the class in which they are defined.
Although it is allowable for a method to have the same name as a class, this

Design and Implementation of the Grunt Programming Language 7

practice is not encouraged because it may confuse the meaning (for the human,
not the compiler). The Integer addend specifies the class and name of an
argument of the message. A message may have any number of arguments:

" Point set:
Assigns to the Point

"
METHOD Point set: Integer newx, Integer newy ||

super := newx.
y := newy.
self
ENDMETHOD

The method is invoked as is suggested by its declaration, e.g. p1 set: 2, 3.
Now, instead of being passed on to Point's superclass Integer, the message +

is understood and executed by Point itself. The superclass's method is said to
have been overridden by a more effective method in the subclass.

Grunt allows messages to be overloaded in the sense that different classes
may implement the same message in different ways. Grunt only allows this
overloading of methods between classes—not within a class. The latter form
would allow one class to respond to the same message in different ways,
depending on the classes and number of arguments.† Smalltalk allows both
types.

Data abstraction In the previous examples, use has been made of the super pseudo-object to refer
to the instance variables of the superclass. There is no way of accessing them
other than through the sending of messages, as instance variables are private
to a class and cannot be referenced directly, even from within subclasses. This
may at first seem an unnecessary restriction, but in fact serves a useful
purpose, as will be shown in the following example.

Consider a programmer who has implemented a class for complex number
arithmetic called Complex, being a subclass of Integer. The programmer decides
to represent its instances as points (x, y) in the complex plane, where either of
the integer coordinates is inherited from Integer and the other is added as an
instance variable. Because the instance variables in Complex cannot be
accessed directly from other classes in the program, the programmer includes
two methods real and imaginary which return the appropriate coordinate of a
receiver. Eventually, other programmers start using Complex to implement
their own, more capable classes.

Much later, the original programmer realizes that the implementation could
have been much more efficient if he had used the polar (r, φ) representation
instead. Instead of requiring all the other programmers to rewrite their classes
(which would have been necessary if they had used instance variables in
Complex), or maintaining two separate versions of the class, the programmer
writes the more efficient version of Complex using polar coordinates and simply
reimplements the real and imaginary methods, which will now require some
trigonometric calculation.

Because of the data abstraction in Grunt, other programmers are forcibly
shielded from the particular implementational details of other work. This
concurs with the principle in object-oriented languages that new classes should
build upon and add new functionality to existing ones.

Extensions The following sections describe some language constructs which were part of
the original Grunt definition but whose incorporation into the final language
was precluded by budget and time constraints.

† This is like Ada, which differentiates procedures based on their formal
parameter lists (called the profile of the procedure)

Design and Implementation of the Grunt Programming Language 8

Blocks In Smalltalk, blocks are a class of objects representing expressions whose
evaluation is deferred until a later point in time. This feature of blocks makes
them useful in the implementation of conditionals, as will be shown in the next
section. Block literals are denoted as expressions enclosed in square brackets.
Blocks respond to the message value by evaluating themselves, as in

[x := x + 1] value

which has an identical effect to writing x := x + 1 directly. Naturally, literal
blocks can be assigned to variable blocks:

incrementerBlock := [x := x + 1].
" some other operations "
incrementerBlock value

The object incrementerBlock value is the one resulting from evaluation of the
block expression, in this case, x := x + 1. In an implementational sense, blocks
consist of subroutines and are represented by its entry point. Unfortunately,
implementation of blocks poses two very serious problems in compiled
languages.

First, in an interpreted language, determination of the class of an ex-
pression may be deferred until it is evaluated, and an error may then be
generated if classes do not match. A compiler, however, must determine the
classes of expressions before they are evaluated, namely at compile-time, so
there is no “class-checking” at all when the program is run. The problem that
arises is that although a block object is always an instance of the class Block (or
whatever), the class of the block expression, that is, block value, depends, of
course, entirely on the expression. How is the compiler to know then, if an
expression like a := someBlock value is legal? One answer to the problem, and
our preferred solution, is to restrict the class of the block expressions to some
‘neutral’ class, such as Object. Even though the block value itself does not
return anything, meaningful results may be obtained through the side effects of
the evaluation of the block, such as the changing of a local variable (as in
incrementerBlock above). This brings us nicely to our second observation.

If blocks are to have any effect at all, they must have access to variables
declared outside it—probably only those in the defining method, that is, the
method in which the block is defined. The problem is, that a block which is
returned as a result object by the method which declared it will produce
strange results when it is evaluated, because the variables it references no
longer exist. The situation does not arise in Smalltalk, because there the
temporary variables and arguments exist in so-called contexts which are
dynamically created by the run-time system and remain in existence even after
the method has completed execution. A more practical solution for the Grunt
compiler might have been to disallow the returning of block objects by methods.

Conditionals Conditional selection of an activity can be implemented within the object-
oriented framework without the introduction of additional symmetry-breaking
mechanisms. Smalltalk provides one form of conditional selection through the
sending of messages to Boolean objects:

condition ifTrueFalse: "true alternative", "false alternative"

The object condition responds to ifTrueFalse: by using the first argument if its
value is true and the second if it is false. There also exist messages ifTrue: and
ifFalse: which take only one argument which is used when the corresponding
condition holds.

The arguments are not actually typical objects such as Integer—if condi-
tional selection really were implemented in this manner, different versions of
the messages would have to be written for each existing class. Instead, just one
version of the method exists which takes block arguments.

Using blocks also solves a problem in the writing of recursive methods.
Because all the arguments to a message are evaluated before it is sent, re-
cursion never has an opportunity of stopping. This point is illustrated in the

Design and Implementation of the Grunt Programming Language 9

following implementation of the factorial operation in a blockless version of the
language:

METHOD Integer ! || " factorial—e.g., 3! is 6 "
(self = 0) ifTrueFalse: " end of recursion? "

1, " 0! = 1 "
self * (self – 1) ! " n! = n*(n–1)! "

ENDMETHOD

The second argument is always evaluated before ifTrueFalse: is sent, even when
self = 0, so that this condition does not end the recursion.

With blocks, however, evaluation of the arguments involves only the in-
terpretation (or compilation, as the case may be) of the block's code and passing
it as the value of the argument. The actual evaluation of the block expression is
deferred:

METHOD Integer ! ||
((self = 0) ifTrueFalse:

[1], " [1] value = 1 "
[self * (self – 1) !] " [self * (self – 1) !] value = n*(n–1)

! "
) value " return the value of the

block "
ENDMETHOD

This also increases efficiency with conditional statements in general, because
expressions corresponding to false alternatives are not needlessly evaluated.
Note that for this scheme to work, an exception would have to be made for
Boolean to the rule that methods cannot return block objects. This poses no
danger, because as it is a system class, we can trust it never to declare any
blocks of its own.

Differences
with Pascal

Observations on some of the differences between object-oriented and procedure-
oriented languages may be helpful in determining the advantages of one type of
language over the other, and in the understanding of the decisions made in the
implementation of the language. To facilitate the discussion, Grunt and Pascal
have been elected as representatives of their respective language types.

Communication Pascal has both functions and procedures (although the latter may be seen as a
special case of function), and arguments in Pascal can be both input or
input/output. In Grunt, arguments are always input-only, the receiver is
always input/output and a method always creates a result (although possibly
one without contents, e.g. an Object object). The complete eradication of
misunderstandings concerning the direction of communication or due to
unexpected side-effects, although in some ways limiting, could be seen as an
advantage of object-oriented languages.

Pascal allows local variables of a procedure to be used by procedures that
are defined inside it. In contrast, Grunt limits the scope of temporary variables
to just the method in which they are defined and the scope of instance variables
to their defining class, increasing locality (thereby enhancing the ability to
build large systems and easing debugging) without limiting functionality:
methods can access other methods' instance variables by sending messages, so
that classes always remain in complete control. It is like having data
abstraction built in at every level, not just between modules.

Design and Implementation of the Grunt Programming Language 10

2
Implementation

The implementation of the Grunt programming language on a VAX 8650
mainframe will be discussed. Also included are other important aspects
including the various types of declarations in object-oriented languages and the
generation of object code for the virtual stack machine for which the compiler is
written. The significantly different scope of objects, as compared to procedure-
oriented equivalents, and the different manner of expression evaluation led to
the design and implementation of an almost completely new set of actions. This
chapter of the report is divided into a part discussing the declaration of objects,
methods, etc., and a second part which concentrates on object-code generation.

NIL procedure arguments are accepted and NIL results are returned by
appropriate routines, usually to indicate that the argument or result is invalid
and should not be used.

Definitions The Grunt language includes several types of definitions—although some of
them show resemblance to definitions in procedural languages like Pascal, they
generally are somewhat different. The scope of local variables (temporary
variables and arguments) in Grunt, for instance, is limited to the method in
which they are defined—in contrast with Pascal where local variables are also
accessible by other procedures defined in the procedure.

Instance variables have a scope limited to the class in which they are
defined. This means that instance variables cannot be directly accessed from
methods defined in subclasses (cf. the Data abstraction section in the previous
chapter). Instance variables do not really have counterparts in Pascal.

Class and method definitions, however, have a wider scope than procedures
in Pascal. The scope of a class or method is ideally the entire source code but is
limited by the fact that declaration must precede use.

Finally, Grunt supports two other types of definitions which have been
mentioned. Arguments of a message have the same scope rules as the tem-
porary variables of the method, so they are treated the same by the Grunt
compiler. It also must support the pseudo-objects self and super. This has
important consequences for the data structures used to manage the definition
data, as will be seen later.

Data structures The identifier definition data structures employed by the parser's standard
actions are not adequate for an object-oriented language—therefore, the data
structures have been extended to support Grunt's more complex definition and
scope structure. After careful examination of the structure of the definitions in
Grunt, the following conclusions could be reached: first, the scope rules of
instance variables, temporary variables and arguments have a sufficient
resemblance to variables in a procedural language to permit the use of
extended standard actions. However, the class and method definitions require a
completely new definition mechanism and structure.

The definition data structure consists mainly of an enhanced defdesrec,
the predefined definition descriptor record used by the standard actions. Many
of the enhancements can be related to the hierarchical structure of the
different types of definitions and to the strong-typed nature of Grunt. The
defdesrec data type has been extended with a definition type-dependent
variant record. The variant record is used, for instance, to link methods to their
defining class, classes to their superclass and to store the result class of a
method. It is not necessary here to present an exhaustive description of all the

Design and Implementation of the Grunt Programming Language 11

design decisions resulting in the definition data structure depicted below.
However, many will become clear upon closer examination of the well-
commented data structures, as well as the above and following descriptions of
scope, object classes and overloading.

Creation Definition data structures are created by calling one of the action procedures
NewClass, NewMethod, NewInstance, NewVariable or NewArgument, each
time a definition is encountered in the compiler input file. These procedures
create and initialize new definition records, which are then linked into the
definition data structure. Because it is a one-pass compiler, declarations
precede use.

For reasons already given in the previous chapter, the current version of the
compiler does not support recursive definition of methods—i.e., a method
cannot be described in terms of itself; run-time stack overflow errors would
occur if they were allowed. Another recursive, but meaningless, form which is
not allowed is instance recursion. Both errors are detected at compile-time by
checking whether an encountered message references the method which is
currently being compiled, or whether the class of an instance variable is the
defining class. This can be done quite easily because Grunt does not permit
forward declaration of methods or classes. Would these have been allowed
recursive constructions could be made which would have been much more
difficult to detect.

Local and global
definitions

Definitions in the Grunt language can be divided into local and global
definitions. Local definitions can simply be added to the frontmost level of the
definition data structure while global definitions must be added to a deeper
level structure than those containing local definitions. For instance, method
declarations are global and must remain in existence, while instance variable
declarations are local and can be discarded outside the class. A special action
AddGlobalDefinition was written which adds definitions to the deepest
level in the definition data structure. The standard action adddefinition
adds definitions to the frontmost level.

Grunt uses two levels of local definitions. The first level is created every
time a class definition is entered. It contains the definitions of the instance
variables of that class. This level remains in existence during the compilation
of the methods of that class. After the last method of a class is compiled and
before optional subclasses are compiled this level is removed from the definition
structure. The second local level is created every time a method definition is
entered and destroyed upon leaving the method. Argument and temporary
variable definitions are contained in this level. Arguments are actually also
given a global declaration, consisting of a small record which is added onto a
method's argument list. The argument list is traversed when the message is
sent to type-check the classes and number of arguments.

The global level is not necessary in procedure-oriented languages because
the order in which definitions are allowed in Grunt differs from that in
procedure-oriented languages. In Pascal, for instance, the nesting of definitions
strictly dictates their scope—in Grunt this is not always the case. Class and
method definitions are always global and remain in existence even when their
definitions have been left.

Definitions have defining classes and defining methods which are the
method or class containing the definition. The Grunt compiler uses various
attributes to pass the defining classes and methods through. At the top of the
definition hierarchy is the Object class which has no defining class at all.

More details about how definitions are dealt with by Grunt can be found in
the listings of the files gruntpars.inp, defown.pas, and initown.pas [L2,
L4, L5]. Global definitions in Grunt are depicted in the following figure:

Design and Implementation of the Grunt Programming Language 12

Figure 2.1

Class
super

methodList
nextMethod

argumentList

Method

procIndex

definitionClass

resultClass

Argument
class

next

Class
super

methodList

Argument
class

next

nextMethod

argumentList

Method

procIndex

definitionClass

resultClass

Not shown in this figure is the fact that synonymous defdesrec definitions
are also linked.

System classes Just prior to the generation of the code for the user methods the compiler de-
clares the are system classes and primitive methods using NewClass and
NewPrimitiveArgument. The code for the primitive methods is also generated
at this time. Following the initialization, system classes and primitive methods
are handled in precisely the same manner and are indistinguishable from other
definitions.

Code genera-
tion

The ‘functional’ part of the Grunt language consists solely of expressions.
Expressions are evaluated by sending messages to objects. Grunt code consists
of two parts. As stated, code implementing the primitive methods is generated
at the start of the compilation process. This is the only place where instructions
such as ‘add’, ‘compare’ or ‘and’ occur—they do not occur in the code generated
by user methods. This is an interesting property which would allow programs
to take advantage of new machine instructions without having to be
recompiled. Imagine for instance a processor for which a software emulation for
floating-point arithmetic is implemented in primitive methods. When a new
version of the processor is used which includes floating-point hardware, simply
changing the code of some primitive methods is sufficient to let all programs
take advantage of the new hardware.

The other code concerns that generated by the compiler from the source file,
which is the type described in this chapter.

Design and Implementation of the Grunt Programming Language 13

Message sending Grunt's equivalent of calling procedures in Pascal is the sending of messages by
methods. In this section, the protocol used to invoke a method will be discussed.
Broadly, this protocol must concern itself with the following requirements. The
value of the receiver of the message may be altered by the method. It is possible
for a method to accept arguments, which are treated as initialized temporary
variables and are input-only (in other words, if a method changes the value of
its arguments the value of the sending method's argument objects do not
change). After the method has completed it returns a result object.
Besides the two types of objects that are passed by the calling method, a
method has six other objects which can be accessed. A method can have
temporary variables, and access its defining class's instance variables. The
super pseudo-object can be used to send messages to the superclass of the
receiver's class, and self can be used in an expression to reference the receiver
object itself. Two types of unnamed objects, literal and temporary, also occur.
Literals are objects which are defined when they are used and cannot be
referenced elsewhere. Temporary objects are created during the evaluation of
subexpressions and do not occur explicitly in the program text.

A design has been used that employs a single stack for all these types of
objects. Using a second stack to store literals and temporaries has some
advantages but is more difficult to implement on an actual processor. As it is, a
stack frame is created upon entry of a method and deleted when it is exited.
The choice of the format of the stack frame has been based on several aspects of
the Grunt language. Because the scope of temporary variables is strictly the
defining method, static links become unnecessary in Grunt.

For this implementation of Grunt we choose to use a hybrid method in-
vocation convention (see figure 2.2). Since receivers can always be modified by
methods, a pointer to the receiver object is passed to the method (analogous to
call-by-reference). This makes it unnecessary to copy a possibly modified
receiver back to the original object after the method has completed. Arguments,
being input-only, are pushed onto the stack and are removed by the called
method together with its temporary variables at its completion. The result
object of a method is moved to the top of the stack. This approach has the
advantage that using expressions as arguments poses no problems, since
expressions also leave just a result object on the stack.

The fact that we pass receivers by means of a reference implies that the
receiver object must already exist somewhere, but unfortunately, this is not
always the case. Literal receivers must be pushed on top of the stack when they
are encountered and then removed after the method has executed. The latter
also holds for temporary objects. By passing to the method the size of objects to
be removed this can also be performed by the method at the same time as the
removal of its own variables. Having both reference and value parameters also
has an instructional advantage.

Expressions in Grunt are grammatically defined as sequences of
subexpressions, called item expressions, separated by periods. Because the
result of an expression is the result of the last item expression, all but the last
of the result objects of item expressions must be removed from the stack.

Some of the complexity of stack management in Grunt can be traced back to
the fact that object-oriented languages generally employ dynamic memory
management to store objects and contexts and therefore do not suffer from
LIFO-restrictions inherent to stack-based mechanisms.

Design and Implementation of the Grunt Programming Language 14

Figure 2.2

^receiver

arguments

size

^receiver

arguments

temporary

result

^old stack frame

size

return address

result

On entry: During execution: On return:

stack
frame

Instructions Several new instructions had to be introduced in order to implement the
proposed object code structure. For simplicity, each of these instructions takes
one instruction selector and two arguments. Only the arguments that are
actually used by the instruction are shown—the others are ignored.

Object code instructions in Grunt programs can be grouped into three sets:
the first set contains two instructions used to create and delete stack frames.
Instructions used to implement the sending of messages, which forms the
foundation of Grunt, are contained in the second set. The last set contains some
special instructions that are used in the implementation of the primitive
methods.

The main Pascal source code modification to the interpreter is given in the
partial listing of owninter.pas [L6].

Stack frame
maintenance

iuser 1 argSize tmpSize create frame

The create frame instruction creates a new local stack frame upon entry into a
method. It allocates the temporary variable space whose size is specified by
tmpSize and initializes them to zero. argSize is the size of the arguments on
the stack. It also sets the stack frame pointer to point to the first argument
after saving its previous contents, as well as the return address.

iuser 2 varSize resultSize delete frame

The function of the user instruction delete frame is to undo the actions of the
previous instruction, that is, to delete the local stack frame, and to return from
the method. It copies the result object to the appropriate location on the stack,
over any literal or temporary object that was used as receiver for the message,
and cleans up the stack by disposing of the arguments and temporary
variables. Execution resumes at the saved return address.

Design and Implementation of the Grunt Programming Language 15

Message sending The set that implements the message sending must be able to push pointers to
all sorts of objects on the stack, as well as pushing the objects themselves when
they are used as arguments. In particular, instructions are needed to access
receiver objects, instance variables, temporary variables, arguments,
temporary objects and literal objects. A more detailed consideration shows that
all these objects can be accessed using just three ‘addressing modes’, resulting
in what appears to be an almost-orthogonal instruction set. The instruction
iuser 4 is not used.

iuser 3 size pop receiver

Pops the object from the stack and stores it in the receiver object, a pointer to
which is located just before the stack frame pointer. size is the size of the
object.

iuser 5 offset size push variable

Pushes the local variable with the specified size and offset from the stack frame
pointer onto the stack. Note that the displacement field (dpl) of argument and
temporary variable declarations already contains the correct offset. The size
can be retrieved from the displacement field of the variableClass of the
variable.

iuser 6 offset size push instance

Pushes the instance variable with the specified size and offset within the
receiver object onto the stack. Note that the displacement field of instance
variable declarations already contains the correct offset. The size can be
retrieved from the displacement field of the instanceClass of the variable.
The entire receiver object can be pushed using an offset of zero and using the
size of the receiver class.

iuser 7 offset push address variable

This instruction pushes a pointer to the local variable with the specified offset
from the stack frame pointer onto the stack. This instruction is used when a
local variable is the receiver of a message. See also the note for the iuser 5
instruction.

iuser 8 offset push address instance

This instruction pushes a pointer to the instance variable with the specified
offset within the receiver object onto the stack. This instruction is used when
an instance variable is the receiver of a message. See also the note for the
iuser 6 instruction.

iuser 9 size push address temporary

Pushes a pointer to the temporary object currently on top of the stack. This
instruction is used when a temporary result is the receiver of a message.

iuser 10 size discard

Destroys the object on top of the stack. This instruction is used when an
evaluated item expression is followed by a second to delete the result of the
former.

Special instruc-
tions

The instructions in this final group are used in the implementation of the
primitive methods, such as addition (iadd), reading (iread) and writing
(iprint). These are sufficiently well documented in [4, pp. 83-94].

Design and Implementation of the Grunt Programming Language 16

A
Examples

The following example illustrates the declaration of class Point and Rectangle
and some methods. The compilation of this file is given in grunt.tgc [L8]. A
sample run of the program is given in [L9, L10]. A stack trace of the x: method
is listed in [L11]. Finally, the compiler listing is shown of a typical Grunt
program faulty.inp, as a beginning object-oriented programmer might write
it.

"
GRUNT.INP

Example of Grunt source code

Version 1.2 06/03/90

(c) Copyright 1990 by Ben Hekster
"

"
Point class definition

Inherited : Integer x
Instanced : Integer y

"

CLASS Point PARENT Integer
| Integer y |

" Point x / x:
Returns/sets the horizontal coordinate of the Point

"
METHOD Integer x || super ENDMETHOD
METHOD Point x: Integer new || super := new. self ENDMETHOD

" Point y / y:
Returns/sets the vertical coordinate of the Point

"
" These examples demonstrate that it is OK to define messages with
 the same names as variables, as Grunt can always tell which of
 the two we mean! "
METHOD Integer y || y ENDMETHOD
METHOD Point y: Integer new || y := new. self ENDMETHOD

" Point :=
Assigns to the Point

"
METHOD Point := Point new ||

super := new x. y := new y. self
ENDMETHOD

" Point +

Design and Implementation of the Grunt Programming Language 17

Adds the specified point
"
" We could have called this one 'translate', but we like to retain
 consistent message nomenclature across classes.

Note that we implement this method by sending messages
 to self, which must be defined before this point "
METHOD Point + Point delta ||

" The inner set of parentheses is used to create a new object
 The outer set is needed to prevent Grunt from thinking
 y: is a message to x, i.e. delta (x y: y) "
((self) x: super + delta x) y: y + delta y
ENDMETHOD

" Point read
Reads the Point as an 'x y' coordinate pair

"
METHOD Point read ||

super read. y read. self
ENDMETHOD

" Point write
Writes the Point as 'x,y'

"
METHOD Point write ||

super write. $,$ write. y write. self
ENDMETHOD

"
Rectangle class definition

Inherited: Point topLeft (left, top)
Instanced: Point bottomRight (right, bottom)

"
CLASS Rectangle
| Point bottomRight |

" Of course, we could also have defined methods to return
 all four of the corners, or alternatively, the top, left,
 bottom, right coordinates "

" Point topLeft / topLeft:
Returns/sets the (left, top) corner of the Rectangle

"
METHOD Point topLeft || super ENDMETHOD
METHOD Rectangle topLeft: Point new ||

super := new. self
ENDMETHOD

" Point bottomRight / bottomRight:
Returns/sets the (right, bottom) corner of the Rectangle

"
METHOD Point bottomRight || bottomRight ENDMETHOD
METHOD Rectangle bottomRight: Point new ||

bottomRight := new. self
ENDMETHOD

" Rectangle :=
Assigns the Rectangle

Design and Implementation of the Grunt Programming Language 18

"
METHOD Rectangle := Rectangle new ||

super := new topLeft.
bottomRight := new bottomRight.
self
ENDMETHOD

" Rectangle read
Reads the left, top, right, bottom coordinates into the Rectangle

"
METHOD Rectangle read ||

super read. bottomRight read. self
ENDMETHOD

" Rectangle write
Writes 'left, top, right, bottom'

"
METHOD Rectangle write ||

super write. $,$ write. bottomRight write. self
ENDMETHOD

ENDCLASS " Rectangle "

ENDCLASS " Point "

"
Program class definition

Inherited : Object
Instanced : none

"
" Now we must write a method for the Program class, so the Grunt
 compiler will know what to run. Note that without specifying one,
 Program's superclass automatically becomes Object "
" Returning the super Object is a tricky way of avoiding any
 unneccessary data transfer when we know we don't want to return
 anything anyway
"
CLASS Program
||

METHOD Object runIt
| Point p. Point delta. Rectangle r |
(p x: 2. p y: 3) write.
(p + delta read) write.
$$n$ write.
r topLeft: p. (r bottomRight: (p) read) write.
p write.
super
ENDMETHOD

ENDCLASS

The translation of this example is given in [L7].
In this example, many of the methods of the superclasses needed to be

overridden, which does not make a very good case for the merits of method
inheritance. Its value may become clear, however, in the following imple-
mentation of ColoredPoint:

Design and Implementation of the Grunt Programming Language 19

CLASS ColoredPoint PARENT Point
| Integer color |

METHOD Integer setcolor Integer newColor ||
color := newColor
ENDMETHOD

METHOD Integer getcolor ||
color
ENDMETHOD

ENDCLASS

All of the methods defined in Point will work as expected—that is, assigning to,
writing or translating a ColoredPoint still produces the same result as to a
Point. This permits the completely painless substitution of a ColoredPoint in
place of Point. Wherever needed, the getcolor and setcolor messages can be
used.

Finally, the following sample file was offered to the Grunt compiler:

CLASS Program
| Integer y. Point x. Program prog |

METHOD Integer := Integer x, Integer x
true not
ENDMETHOD

METHOD Integer aRealMethod Boolean b, Integer i || i ENDMETHOD

METHOD Integer recursive
| Program p |
p recursive.
p aRealMethod 3, true, a.

ENDCLASS

The resulting output is shown in [L12].

Design and Implementation of the Grunt Programming Language 20

B
Grammar

Following are the formal syntax and representation rules of the Grunt lan-
guage†. They have been derived from [L1, L2].

grunt : classlist.
classlist : class CLOS.
class : classsym, classname, (parentsym, classname) OPTION,

 instancelist,
 methodlist,
 classlist,
 endclasssym.

classname : identifier.
instancelist : declsym, (instance CHAIN separsym) OPTION, declsym.
instance : classname, variablename.
variablename : identifier.
methodlist : method CLOS.
method : methodsym, classname, methodname, argumentlist,

 declarationlist,
 expression,
 endmethodsym.

methodname : identifier.
argumentlist : argument LIST OPTION.
argument : classname, argumentname.
argumentname : identifier.
declarationlist : declsym, (declaration CHAIN separsym) OPTION, declsym.
declaration : classname, variablename.
expression : itemexp CHAIN separsym.
itemexp : receiver, message OPTION.
message : methodname, parameterlist.
parameterlist : startsym, itemexp LIST OPTION, stopsym.
receiver : opensym, expression, closesym;

 variablename;
 selfsym; supersym;
 literal.

literal : integersym;
 charsym;
 truesym; falsesym.

comment : commentsym, (character - commentsym) SEQ, commentsym.
identifier : (letter; symbol), (letter; digit; symbol) CLOS.
integersym : digit SEQ.
charsym : charlitsym, charlitsym OPTION, character, charlitsym.
letter : a, .., z, A, .., Z.
digit : 0, .., 9.
symbol : !, #, %, &, *, +, -, /, :, ;, <, =, >, ?, @, \,

 ^, _, `, {, |, }, ~.
classsym : CLASS.
parentsym : PARENT.
endclasssym : ENDCLASS.
methodsym : METHOD.
endmethodsym : ENDMETHOD.
selfsym : self.
supersym : super.
truesym : true.
falsesym : false.
declsym : |.

† Actually, they apply to the unmodified version of the language, not the final

Design and Implementation of the Grunt Programming Language 21

separsym : ..
opensym : (.
closesym :).
startsym : [.
stopsym :].
charlitsym : $.
commentsym : ".

The nonterminal comment has been included in this definition, even though it
does not appear in the right-hand side of any other nonterminal. Its legal place
is between any two nonterminals.

This definition of the Grunt grammar includes a definition of the pa-
rameterlist nonterminal enclosed within square brackets (startsym and
stopsym), which were needed to satisfy the LL(1)-property of the syntax.
Consider the statement

receiver1 message1 receiver2 message2 argumentA, argumentB

It is not clear to which message the arguments belong—they could be inter-
preted as either of:

receiver1 message1 [receiver2 message2 argumentA, argumentB]
receiver1 message1 [receiver2 message2 argumentA], argumentB

This is called the argument ambiguity.
Because we wanted to emulate the Smalltalk syntax as much as possible we

needed to transcend the boundaries of LL(1)-grammars. During development
we made use of the original definition described above which required
parameter lists to be enclosed within brackets. After we were sure no
additional changes to the parser were necessary, the parser was recompiled
with the state procedure representing the parameterlist nonterminal sub-
stituted by the following modified version:

{ p_param092
Modified 'parameterlist' nonterminal parser
Does not require the parameter list to be enclosed within
square brackets--instead, reads as many arguments (separated
by commas) as possible

}
PROCEDURE p_param092; {(keys: tsymbolset; VAR v_par09200: t_param092)}
CONST

receivers = [opensym, charsym, integersym, identifier,
falsesym, selfsym, supersym, truesym];

VAR theargumentlist : argumentlistptr;
v_ite08901 : t_iteme089;

BEGIN
firstargument(theargumentlist, v_par09200.plmethod);
{ next symbol may be a receiver }
delete(keys + receivers);
IF sym IN receivers THEN REPEAT

{ there IS a receiver }
IF sym = commasym THEN nextsym;
assdefinition(v_ite08901.iedefinitionclass,

v_par09200.pldefinitionclass);
{ receiver may be followed by a ',' }
p_iteme089(keys + [commasym], v_ite08901);
checkargument(theargumentlist, v_ite08901.ieclass)
UNTIL sym <> commasym;

lastargument(theargumentlist);
delete(keys);
END;

Testing then showed the above procedure to give the desired results. The only
change to the syntax given above is

parameterlist : itemexp LIST OPTION.

Design and Implementation of the Grunt Programming Language 22

Of course, using this ‘rule’ makes the grammar non-LL(1). The terminals
startsym and stopsym might have been moved to symbol to give Grunt
programmers some extra flexibility—note, however, that they are also used in
the implementation of block literals.

The compiler evaluation rule is, then, that arguments always belong to the
last (rightmost) message. Therefore in the example the first alternative is the
correct one. A more sophisticated compiler might deduce from the message
profile to which message an argument belonged.

Note that similar situations exist in procedural languages. For example, in
the following C statement:

if (condition1) then
if (condition2) then

statement1;
else

statement2;

it is not clear whether the else clause applies to the first or second if-then.
This so-called else ambiguity is resolved by always connecting an else to the
last else-less if [5, pp. 56, 223].

Design and Implementation of the Grunt Programming Language 23

C
Translation

Following are the translation rules for Grunt. As in [6, p. 160], curly brackets
‘{}’ refer to items which may be repeated zero or more times. Also, in the
translation of the nonterminal grunt, InitGrunt refers to the translation of
the primitive methods in that action procedure. The code which executes the
call to the first method in Program which is also generated in this routine is
listed explicitly. For conceptual clarity, the itemexp nonterminal has been
split in its occurrence with and without a trailing message.

<grunt> : InitGrunt,
 ildint(0), ildint(0), icall(startLabel), istop,
 <classlist>.

<classlist> : {<class>}.
<class> : <methodlist>.
<methodlist> : {<method>}.
<method> : iuser(1, argSize, varSize),

 <expression>,
 iuser(2, argSize+varSize, resultSize).

<expression> : <itemexp>,
 {iuser(10, expClassSize, 0), <itemexp>}.

<itemexp> : <receiver>,
(;
 iuser(5, dpl, size);
 iuser(6, 0, size);
 iuser(6, dpl, size)
).

<itemexp, message>
: <receiver>,
(iuser(7, dpl, 0);
 iuser(8, dpl, 0);
 iuser(9, size, 0)
),
 ildint(size), icall(methodIndex).

<receiver> : <expression>; <literal>.
<literal> : ildint(intValue);

 ildchar(charValue);
 ildint(1);
 ildint(0).

It will be clear that much of the regular simplicity of a compiled Grunt
program is derived from the fact that all the primitive (built-in) operations
normally associated with programming languages are treated in precisely the
same way as user-defined operations, whereas typical procedure-based
languages require special translation rules for each of its operators.

In many instances it might appear more appropriate to move some of the
translation to other nonterminals. For instance, the instructions for pushing
the value of temporary variables, receivers, or instance variables in <itemexp>
might seem better placed in receiver. This, and other cases like it, could not
be implemented in this manner, because at the time receiver is being parsed
it is not known whether it will be followed by a message or not. The
translation must therefore be deferred.

Design and Implementation of the Grunt Programming Language 24

D
Bibliography

The [L]-references apply to the listings accompanying the report.

[1] Goldberg, Adele, David Robson, Smalltalk-80, The Language and its
Implementation, Addison-Wesley

[2] Smalltalk/V Mac Object-Oriented Programming System (OOPS), Digitalk
Inc., Los Angeles, September 1988

[3] Storrie-Lombardi, Michael C., Smalltalk/V Mac: A New Standard in
Object-Oriented Programming, MacTech Quarterly, Volume 1 Number 2,
Summer 1989

[4] Schaap-Kruseman, J.P., Handleiding scanner/parser generator en
praktikum vertalerbouw, juni 1989

[5] Kernighan, Brian W., Dennis M. Ritchie, The C Programming Language,
Second Edition, Prentice-Hall

[6] Alblas, H., et al., Vertalerbouw, Academic Service

Design and Implementation of the Grunt Programming Language 25

Index

:= 1, 5
" 1
$ 1
() 2
. 5
[] 8
| 6
argument 1, 7

ambiguity 21
list 11

assignment 1
block 8
Boolean 4
carriage return 1
Character 4
class 2

declaration 3-4
defining 11
system 4

declaration 12
comment 1
conditional 8-9
data abstraction 7
defdesrec 10
definition

creation 11-12
data structures 10-11
global 11
local 11
scope 10

dot operator 5
expression 5

block 8
item 13

false 1
Grunt ii
inheritance 2
instance 2
Integer 2, 4
literal

block 8, 22
Boolean 1
character 1
integer 1
receivers 1

message 1-2
code generation 13-14
profile footnote on p. 7

method 1
declaration 6

defining 11
inheritance 18
primitive

declaration 12
object 1-2, 3, 4

pseudo- 6
result 1
temporary 6

overloading
method 7

override 7
read 2
receiver 1, 5-6
recursion

detection 11
instance 3

self 6
Smalltalk-80 ii
stack frame 13

instructions 14
subclass 2
super 6
superclass 2-3

specification 3
tab 1
true 1
understand 1
value 8
variable 1

instance 2
local 6
temporary 6

write 1

